Import necessary libraries
library(dbplyr)
library(tidyverse)
library(ggplot2)
library(patchwork)
Import files
Toomey_ebird<-read.csv("MBT_ebird.csv") #import saved ebird data
Create table of counts
options(dplyr.summarise.inform = FALSE) #make summarize function recognize all groups
#create table with year, month, location, and species
year_count<-Toomey_ebird %>% #reference which file to count data in
group_by(month, year, location ) %>% #group data by year
count(common_name)
#count the number of species for each group
year_count2<-year_count %>% #reference which file to count data in
group_by(month, year, location ) %>% #group data by year
summarise(num_of_species=n())
#output final table
head(year_count2)
## # A tibble: 6 × 4
## # Groups: month, year [3]
## month year location num_of_species
## <int> <int> <chr> <int>
## 1 1 2004 US-CA 23
## 2 1 2004 US-NV 9
## 3 1 2013 US-CA 1
## 4 1 2013 US-MO 1
## 5 1 2014 US-MA 4
## 6 1 2014 US-MO 13
create and display plot
p1 <-ggplot(data= year_count2)+ #reference created data table
aes(as.factor(month), #reference x axis variable as a factor to make it pretty
num_of_species, #reference y axis variable
color = year) + #color the points based on a variable
geom_point(size =3)+ #add points and make them bigger than the default
facet_wrap( #make a whole bunch of graphs, stacked on top of each other
~location)+ #each refereneceing a location
xlab("Month")+ #give a title for x-axis
ylab("Number of species")+#give a title for y-axis
ggtitle("Count of observed species in each state")+ #add main title
labs(color="Year") #edit legend title
p1 #output plot
import required dataset (data table created in Assignment 5)
f3<-read.csv("f3.csv") #import saved dataframe
Create plot
p2 <-ggplot(data= f3,aes(treatment,mass) )+ #reference data to add to the plot
geom_jitter(size =3, aes(treatment, mass, color=gender))+ #add points to plot
xlab("Treatment")+ #add labels
ylab("Mass")+
stat_summary(fun = mean, #add mean to the bar in the color red
geom = "crossbar",
width = 0.5,
color = "red") +
stat_summary(geom = "errorbar", #add errorbars to figure in black
width = 0.3)+
labs(color="Sex") #edit legend title
p2 #output graph
p3<-ggplot(data= f3,aes(age,mass) )+ #reference data to add to the plot
geom_point(size =3, aes(age, mass, color=treatment))+ #Add scatterplot points
xlab("Age")+ #label axises
ylab("Mass")+
geom_smooth(size = 2, method = lm, #add line of best fit
aes(color = treatment, group = treatment), #have a line for each treatment
se=FALSE)+# do not show error around the lines
labs(color="Treatment")
p3 #output graph
p2+p3+ #put two plots into a single figure
plot_annotation(tag_levels ='a')+ #label each table with A and B
plot_annotation('Changes in treatment effects for age and sex') #Title combined tables